Contre information sur les OGM médicamenteux

par Dr. Christian Velot, Université Paris Sud Orsay

Suite au au scandaleux reportage de France 2 où une mère et son enfant atteint de mucovicidose ont été mis face à des faucheurs volontaires d’OGM pour "un débat" ce lundi soir, voici le rapport du Dr. C. VELOT remis à Monsieur Pierre-Joël BONTE, Président du Conseil Régional d’Auvergne.

Rapport du Dr. C. VELOT, 18 mars 2005

A Monsieur Pierre-Joël BONTE, Président du Conseil Régional d’Auvergne

Objet : Rapport sur le projet de la Société MERISTEM THERAPEUTICS : culture en plein champ d’un maïs transgénique produisant la lipase gastrique de chien destinée à soulager les enfants atteints de mucoviscidose.

La société Meristem Therapeutics a fabriqué un maïs transgénique produisant une lipase gastrique de chien destinée à soulager les désordres digestifs des enfants atteints de mucoviscidose. L’utilisation de la transgenèse pour la production d’une telle enzyme, même s’il ne s’agit là que d’un traitement de soulagement et non d’un traitement curatif, offre beaucoup d’espoir pour ces enfants et leur famille, et peut, de ce fait, être considérée comme une réponse à une attente de la société.

Ce rapport s’articule en deux grandes parties : la première concernant les alternatives, et la seconde concernant les risques de dissémination.

A. Alternatives

Mersitem Therapeutics propose, pour produire cette lipase gastrique, de cultiver le maïs transgénique en question en plein champ. Or, conformément au rapport des « quatre sages » sur les essais d’OGM (Documentation française, 2003), « l’expérimentation de plantes génétiquement modifiées non alimentaires (par exemple les OGM médicaments) n’est justifiée que si la production des mêmes molécules utiles ne peut être obtenue en milieu confiné (notamment en laboratoire)... »

Depuis plus de vingt ans, la production de protéines d’intérêt pharmaceutique par transgenèse est pratiquée en laboratoire en utilisant essentiellement des micro-organismes (bactéries et levures de boulangerie) en fermenteurs. C’est le cas notamment de la production d’insuline, d’hormone de croissance, des facteurs VIII et IX de coagulation, du vaccin contre l’hépatite B, etc... Alors pourquoi avoir recours aujourd’hui à des plantes pour la production de telles protéines ? Le principal argument avancé est le suivant.

Le secret de fabrication des protéines est contenu dans les gènes. Le langage génétique étant universel, tout organisme est capable de "traduire" un gène qui ne lui appartient pas et de fabriquer ainsi la protéine correspondante (c’est le principe de la transgenèse). Cependant, un grand nombre de protéines, en particulier celles des organismes dits "supérieurs" comme les humains, ont besoin pour être fonctionnelles, de subir, juste après avoir été fabriquées, des modifications chimiques telles que, par exemple, l’ajout de sucres (on parle alors de glycosylation). Les microorganismes ne sachant pas toujours faire ces modifications, la protéine étrangère qu’on leurs demande de fabriquer n’est alors pas "finie". Le fait est que très souvent, les plantes sont capables de réaliser la glycosylation ou toute autre modification dite "post-traductionnelle", et nous sont donc présentées comme une excellente alternative aux organismes transgéniques utilisés jusqu’alors comme usines de production de protéines d’intérêt pharmaceutique. Qu’en est-il exactement ?

Premièrement, il faut savoir que dans un certain nombre de cas, la levure de boulangerie est parfaitement capable de réaliser ces modifications, et donc de fabriquer directement des protéines opérationnelles. Disposant du gène de la lipase gastrique de chien, tout biologiste moléculaire travaillant sur la levure (et c’est mon cas) est capable en quelques semaines de fabriquer la levure transgénique produisant cette lipase gastrique. A t-on essayé de produire la lipase gastrique dans la levure ? Non.

Deuxièmement, il existe d’autres cellules que les microorganismes permettant de produire en culture (et donc toujours en espace confiné) et à grande échelle des protéines d’intérêt pharmaceutique. Ce sont par exemple les cellules d’insectes et les cellules d’ovaires de hamster (à partir desquelles on produit également le vaccin contre l’hépatite B par exemple), qui bien évidemment, sont beaucoup plus proches de nos propres cellules et ont donc beaucoup plus de chances de pouvoir réaliser les modifications post-traductionnelles requises par nos protéines. A t-on essayé de produire la lipase gastrique dans de telles cellules ? Non.

Troisièmement, ces modifications peuvent également être réalisées in vitro, après avoir extrait et purifié la protéine "non finie" des cellules transgéniques utilisées. Par exemple, l’insuline humaine produite par transgenèse dans la bactérie depuis 1981, n’est pas fonctionnelle à la sortie du micro-organisme et doit subir des modifications in vitro avant d’être administrée aux diabétiques insulino-dépendants. Certes, ces modifications conduisent à plus de 50% de perte et ont un coût. Ce "surcoût" engendré par l’incapacité du micro-organisme à finir le travail serait discriminatoire et le placerait hors compétition vis-à-vis de la plante. Mais rien n’est moins sûr... La société MERISTEM nous dit qu’il faut un hectare de son maïs transgénique pour produire la quantité de lipase gastrique nécessaire au traitement de 10 enfants (et qu’il faudrait donc à terme cultiver de l’ordre de 1000 hectares de ce maïs pour assurer la production nécessaire au traitement de l’ensemble des enfants atteints de mucoviscidose en France). En clair, cela signifie que le taux de production de lipase par pied de maïs est ridicule, et donc que le coût de purification de cette enzyme sera extrêmement élevé (il faudra purifier une protéine peu abondante à partir du mélange protéique très riche d’un organisme pluricellulaire complexe qu’est le maïs). En revanche, il est extrêmement facile de faire produire à une bactérie ou à la levure de boulangerie (organismes unicellulaires) des quantités très abondantes de cette lipase. Le coût des éventuelles modifications post-traductionnelles in vitro nécessaires serait alors largement compensé par l’économie faite sur la purification qui serait alors extrêmement simplifiée et conduirait à de très hauts rendements.

Quatrièmement, quand bien même le végétal constituerait, d’un point de vue tant biotechnologique qu’économique, le moyen idéal pour produire une protéine d’intérêt pharmaceutique, défiant toute concurrence de la part des microorganismes et autres systèmes cellulaires utilisés jusqu’alors en laboratoire, l’utilisation de la plante entière ne se justifie absolument pas pour autant. Il est tout à fait possible, à partir d’un morceau de plante (par exemple un morceau de racine) de régénérer une plante entière, mais également de multiplier les racines en culture, ou encore de faire en sorte que les cellules de racines se dissocient et se multiplient individuellement, offrant là encore la possibilité de les entretenir à grande échelle en culture. Ainsi, à partir d’une plante transgénique produisant une protéine d’intérêt (et obtenue à petite échelle en espace confiné), la production à grande échelle de cette protéine peut être obtenue, non pas en cultivant la plante sur des surfaces considérables, mais simplement en réalisant des cultures, dans des bio-réacteurs, du tissu (ou des cellules du tissu) dans lequel s’accumule cette protéine. De plus, il est important de préciser que les milieux de culture de cellules de plantes sont des milieux extrêmement simples et peu coûteux, et que lorsqu’il s’agit des racines, très souvent la protéine produite est excrétée dans le milieu extérieur, c’est-à-dire dans le milieu de culture, ce qui simplifie encore grandement la purification. Un article (référence 1), paru en novembre dernier dans la revue Nature Biotechnology (pourtant réputée être très "pro-OGM"), et intitulé « Cultures de cellules de plantes pour la production de protéines d’intérêt » souligne que « L’avantage sans doute le plus important des cellules de plantes par rapport à la plante entière est la procédure beaucoup plus simple de purification du produit, tout particulièrement quand ce produit est sécrété dans le milieu de culture ». Il y est également écrit que « Contrairement aux plantes en plein champ, la performance des cultures de cellules de plantes est indépendante du climat, de la qualité du sol, des saisons, de la longueur du jour et du temps [et qu’] il n’y a aucun risque de contamination avec des mycotoxines, des herbicides ou des pesticides ». Cet article recense notamment les 23 protéines d’intérêt pharmaceutique déjà produites en laboratoire dans des cultures de cellules de plantes (essentiellement du tabac).

Il est donc clair que non seulement les alternatives en espace confiné existent, mais qu’en plus, celles-ci présentent des avantages incontestables par rapport aux plantes cultivées en plein champ.

B. Risques de dissémination

La production d’une substance pharmaceutique en plein champ pose bien-sûr le problème majeur des risques de dissémination : il s’agit d’ouvrir la pharmacie sur la nature !

N’oublions pas qu’aux Etats-Unis, en 2002, du soja destiné à l’alimentation humaine avait été contaminé par du maïs transgénique de la société ProdiGène cultivé pour produire un vaccin porcin. Qu’il s’agisse d’une contamination par des repousses (comme c’était vraissemblablement le cas dans cette affaire) ou due à une erreur humaine, il est évident que nous ne pourrons jamais avoir les garanties d’une parfaite étanchéité entre les filières, depuis la culture jusqu’à la récolte et le stockage dans les silos (d’autant plus que le flux de graines, transportées notamment par les oiseaux ou autres animaux est bien évidemment incontrôlable !).

A ces problèmes majeurs d’absence d’étanchéité s’ajoutent les risques de dissémination par « pollution génétique », c’est-à-dire le risque que le (ou les) gène(s) étranger(s) introduit(s) volontairement dans une plante (ici le maïs) se retrouve(nt) involontairement dans une autre ou dans un autre organisme. On distingue d’une part la contamination dite "verticale", c’est-à-dire par pollinisation et croisements inter-variétaux, et d’autre part la contamination dite "horizontale", c’est-à-dire le transfert direct de matériel génétique entre deux organismes, sans croisement, par exemple entre plantes et micro-organismes du sol, ou encore d’une plante à une autre plante via les virus.

En ce qui concerne la contamination verticale, nos régions étant à priori dépourvues d’espèces apparentées sexuellement compatibles avec le maïs, celui-ci ne peut se croiser qu’avec un autre maïs cultivé, risque dont la société MERISTEM prétend s’affranchir en utilisant un maïs mâle stérile (non producteur de pollen transgénique fertile). Ce type de précaution permet sans aucun doute de diminuer considérablement les risques de transfert par pollinisation, mais certainement pas de les éliminer, la stérilité totale du maïs n’étant jamais certaine.

En revanche, la société MERISTEM se garde bien d’aborder le problème des riques de contamination par transferts horizontaux, et s’est contentée, lorsque cet aspect a été soulevé en votre présence, de négliger ces risques, prétextant (je cite) « que ce type de transfert n’avait pas été démontré et que si toutefois ce phénomène se produisait, ce serait avec une probabilité telle qu’on pouvait le négliger ». On ne peut que s’étonner devant de telles affirmations, en particulier de la part de scientifiques, alors que ce phénomène de transfert horizontal, amplement démontré entre bactéries (à la fois in vitro et dans des environnements naturels [références 2 à 6]), a également été mis en évidence, à travers un certain nombre d’exemples, entre des plantes (ou autres organismes pluricellulaires) et des bactéries du sol [références 7 à 11], ainsi qu’entre des plantes et des champignons microscopiques parasites des plantes [références 12 et 13]. Des transferts horizontaux du gène de résistance à l’antibiotique hygromycine ont d’ailleurs été démontrés entre des plantes transgéniques (dans lesquelles il était utilisé comme gène marqueur) d’une part et le champignon filamenteux Aspergillus niger [référence 14], ou une bactérie du sol [référence 15] d’autre part. La même démonstration a été faite pour le gène de résistance à l’antibiotique kanamycine entre une betterave à sucre transgénique (dans laquelle il était là encore utilisé comme gène marqueur) et des bactéries du sol [référence 16].

Certes, les quelques (trop) rares études expérimentales faites en laboratoires sur le transfert horizontal entre des plantes transgéniques et des micro-organismes du sol ou associés aux plantes indiquent que les fréquences de ces transferts sont très faibles [références 17 à 20]. Mais il ne faut pas perdre de vue les points suivants :
(1) ces conclusions reposent sur un nombre très faible d’études ;
(2) une surface cultivée représente une extraordinaire concentration des gènes étrangers qui font l’objet du risque de pollution génétique ;
(3) chaque étude de transfert horizontal en laboratoire ne s’intéresse qu’à un seul micro-organisme (comme receveur potentiel du gène étranger) alors que le sol en contient une multitude dont environ 5% seulement sont connus ;
(4) après récolte, les parties de plantes restantes sont en général broyées et enfouies dans le sol, ce qui augmente considérablement l’accessibilité des micro-organismes du sol à l’ADN végétal, et donc les risques de transferts horizontaux. Les études faites en laboratoire ne peuvent donc que largement sous-estimer les fréquences avec lesquelles ces transferts peuvent se produire en plein champ. Pour autant, il est évident que ce type d’étude - notamment pour les raisons évoquées au point (3) - est inabordable en espace ouvert [référence 21] et qu’aucun essai en plein air ne pourrait être justifié par des études de transfert horizontal.

Enfin, il est essentiel de souligner, qu’en ce qui concerne les plantes génétiquement modifiées (et à fortiori lorsqu’il s’agit de plantes-médicaments), une faible (et aussi faible soit elle) fréquence de contamination ne peut constituer un argument en faveur d’une dissémination volontaire, tout simplement en raison de l’avantage sélectif que peut éventuellement procurer le gène étranger à l’organisme qui le récupère. En effet, si le gène en question confère des propriétés avantageuses à l’organisme qui l’héberge, celui-ci pourra alors proliférer au détriment des ses congénères et des autres organismes de la même niche écologique. Cet organisme devenu transgénique par contamination (ou pollution génétique), initialement minoritaire, deviendra alors majoritaire. C’est la raison pour laquelle le risque de pollution génétique n’est pas un risque qui se dilue dans le temps, mais au contraire qui se concentre avec le temps. Dans une revue sur les risques de transferts horizontaux entre les plantes transgéniques et les bactéries du sol [référence 22], intitulée « Transfert de gène horizontal entre plantes transgéniques et bactéries du sol - un évènement rare ? », les auteurs soulignent que « Les fréquences de transfert ne doivent pas être confondues avec les probabilités de survenue des implications environnementales... » Ils ajoutent que « Seulement une compréhension précise des évènements sélectifs dans les environnements naturels permettra de prédire les conséquences possibles de l’introduction de nouveaux gènes dans les milieux ouverts ».

Aux problèmes d’étanchéité soulevés précédemment s’ajoute donc un véritable danger écologique : aucune garantie de l’absence de contamination des autres cultures et de l’environnement en général ne pourra être obtenue si un tel maïs est cultivé en plein champ. De plus, s’agissant d’un maïs produisant une protéine d’intérêt pharmaceutique, ces divers risques de dissémination s’accompagnent inévitablement de risques sanitaires.

En conclusion, ce maïs (et les plantes-médicaments en général) pourraient s’avérer redoutables tant leur culture en plein champ présente des risques non maîtrisés.

De tels risques sont d’autant plus injustifiés qu’il existe, comme je l’ai détaillé dans la première partie de ce rapport, multiple alternatives pour produire (toujours par transgenèse) cette lipase gastrique de chien en espace confiné.


Dr. Christian Vélot, Maître de Conférences, Génétique Moléculaire Université Paris-Sud XI Institut de Génétique et Microbiologie Centre Scientifique d’Orsay - Bât. 360 91405 ORSAY Cedex Tél. : 01 69 15 82 95